

TCD3000 Screw-In Transmitter

TCD3000 Screw-In Transmitter

The compact and robust TCD3000 SI (Screw-In) transmitter is ideally suited for precise, fast, and sensitive measurement of (quasi-)binary gas mixtures. The measurement is based on the principle of thermal conductivity. This technology is ideal for measuring gases with significantly different thermal conductivities, such as H2 and O2.

Our Advantages:

- Revolutionary precision in hydrogen concentration measurement: Discover our gas
 measuring devices with industry-leading response time of 30 ms and a measurement
 range from a few ppm to 100 vol%, specially developed for the new requirements of the
 hydrogen infrastructure in the energy sector and process industry.
- Unrivalled robustness for demanding environments: Our devices resist condensate and water without damage, provide precise measurements up to a pressure of 700 bar, and are optimized for use in humid environments – ideal for electrolysers, fuel cells, and other hydrogen applications.
- Maximum safety, minimal maintenance: Increase your work safety with our fast and reliable explosion level monitoring. Our devices are a long-term investment with a lifespan of up to 10 years.
- Adaptability meets economy: Save costs and space with our versatile gas measuring
 devices that can measure a wide variety of gas mixtures without additional sample
 preparation. A cost-efficient solution that surpasses the competition in terms of price and
 performance.

TCD3000 SI SPECIFICATIONS					
Dimensions with connections; Weight	H=80 mm, D=40 mm; G1/2"; SW36; ~250g				
Power Supply	12 – 36 VDC, 12 W				
Digital Output	RS485, Baud rate 38400 / Data 8bit				
Analog Output	4-20 mA, 3-wire connection				
Ambient temperature range	-20°C 80°C				
Warm-up Time	<.1 Min.				
Flow Rate	0 10 m/s				
Gas Pressure (absolute)	0.8 200 Bara / 700 Bara on request				
T90-Time	<1s				
Noise	< 50 ppm				
Drift at zero point	< 100 ppm per week				
Repeatability	< 50 ppm				
Error due to change of ambient temperature	< 50 ppm per 10°C				
Flow Influence	< 50 ppm per 10I/h				
Pressure Dependency (above 800 hPa)	< 50 ppm per 10hPa				
All data refer to the measuring range 0.5 vol.% H_2 in N_2					

MOST REQUESTED MEASUREMENT COMPONENTS AND RANGES

Measuring gas	Carrier gas	Basis range	Smallest range
Hydrogen (H ₂)	Oxygen (O ₂)	0 – 100 % *	0 – 0,5 %
Oxygen (O ₂)	Hydrogen (H₂)	0 – 100 % *	0 – 1,0 %
Hydrogen (H ₂)	Nitrogen (N ₂) or air	0 – 100 %	0 – 0,5 %
Nitrogen (N ₂)	Hydrogen (H₂)	0 – 100 %	0 – 2,0 %
Hydrogen (H ₂)	Argon (Ar)	0 – 100 %	0 – 0,5 %
Hydrogen (H ₂)	Helium (He)	20 – 100 %	-
Hydrogen (H ₂)	Methane (CH ₄)	0 – 100 %	0 - 0,5 %
Hydrogen (H ₂)	Carbon dioxide (CO ₂)	0 – 100 %	0 – 0,5 %
Helium (He)	Nitrogen (N ₂) or air	0 – 100 %	0 - 0,8 %
Helium (He)	Argon (Ar)	0 – 100 %	0 – 0,5 %
Methane (CH ₄)	Nitrogen (N ₂) or air	0 – 100 %	0 – 2,0 %
Methane (CH ₄)	Argon (Ar)	0 – 100 %	0 – 1,5 %
Oxygen (O ₂)	Nitrogen (N ₂)	0 – 100 %	0 – 15,0 %
Oxygen (O ₂)	Argon (Ar)	0 – 100 %	0 – 2,0 %
Oxygen (O ₂)	Carbon dioxide (CO ₂)	0 – 100 %	0 – 3,0 %
Nitrogen (N ₂)	Argon (Ar)	0 – 100 %	0 – 3,0 %
Carbon dioxide (CO ₂)	Nitrogen (N ₂) or air	0 – 100 %	0 – 3,0 %
Carbon dioxide (CO ₂)	Argon (Ar)	0 – 60 %	0 – 10,0 %
Argon (Ar)	Carbon dioxide (CO ₂)	40 – 100 %	-
Argon (Ar)	Oxygen (O ₂)	0 – 100 %	0 – 3,0 %

TCD technology also allows to perform the measurements of the following industrial gases: SF₆, NO₂, Neon, Krypton, Xenon, Deuterium etc.

^{*} correspondent safety measures must be taken by the client in the application with explosive gas mixtures

GENERAL APPLICATION AREAS			APPLICATION EXAMPLES		
	◆▲丹庙	Oil & gas, petrochemicals, chemicals	Hydrogen measurement in electrolysis	O ₂ in H ₂	Upper Explosion Limit (UEL)
		and synthetics	Oxygen measurement in electrolysis	H ₂ in O ₂	Lower Explosion Limit (LEL), with high moisture content
J		Gas chromatographs Air separators and pure gas production	H2 contamination in electrolysis, fuel cells, and semiconductor industry	H ₂	99-100 vol.%, H2 Quality 4.0
o		Detection of gas leakages	Exhaust gas measurement in fuel cells	H ₂ in Air	LEL monitoring with very high water content
o		Pharmacy	H2 injection into the natural gas network	H₂ in Natural Gas	0-100 vol.%, mixing control
o		Food industry	Decomposition and synthesis of ammonia	H ₂ in N ₂ + NH ₃	0-100 vol.%, process control
ò	6EB	Metals, minerals, pulp and paper	Turbogenerators in power generation	H_2 in Luft, H_2 in CO_2 (Ar), CO_2 (Ar) in Air	Monitoring of UEL, draining and filling process
ò	Ä	Power generation	Pure gas production and incoming goods inspection	H ₂ , He, CH ₄ , O ₂ , N ₂ , CO ₂ , Ar	Identification of the quality of produced and delivered gases
0	Environmental technology	Industrial applications	H ₂ in N ₂	0-10 vol.%, systems for the production and monitoring of forming gas	
			Safety monitoring	H2 in Air	UEL, analysis of hydrogen dispersion in facilities and buildings

Experts in hydrogen measurement

Archigas GmbH Eisenstraße 3 D-65428 Rüsselsheim am Main

Registry Court: Frankfurt am Main Register Nummer: HRB 119977

Tel: +49 (0)69 247544980

Info@archigas.de

www.archigas.de