

Experts in hydrogen measurement

TCD3000 Transmitter

TCD3000 Transmitter

The compact and robust TCD3000 transmitter is ideally suited for precise, fast, and sensitive measurement of (quasi-)binary gas mixtures. The measurement is based on the principle of thermal conductivity. This technology is ideal for measuring gases with significantly different thermal conductivities, such as H2 and O2.

Our Advantages:

- Revolutionary precision in hydrogen concentration measurement: Discover our gas measuring devices with industry-leading **response time of 30 ms** and a measurement range from a **few ppm to 100 vol%**, specially developed for the new requirements of the hydrogen infrastructure in the energy sector and process industry.
- Unrivalled robustness for demanding environments: Our devices **resist condensate and water without damage**, provide precise measurements up to a pressure of **200 bar**, and are optimized for use in humid environments – ideal for electrolysers, fuel cells, and other hydrogen applications.
- Maximum safety, minimal maintenance: Increase your work safety with our **fast and reliable explosion level monitoring**. Our devices are a long-term investment with a **lifespan of up to 10 years**.
- Adaptability meets economy: Save costs and space with our versatile gas measuring devices that can measure a wide variety of gas mixtures without additional sample preparation. A cost-efficient solution that surpasses the competition in terms of price and performance.

TCD3000 SPECIFICATIONS				
Dimensions with connections; Weight	B=54 mm, H=80 mm, D=34 mm; ~500g			
Power Supply	12 – 36 VDC, 12 W			
Digital Output	RS485, Baud rate 38400 / Data 8bit			
Analog Output	4-20 mA, 3-wire connection			
Ambient temperature range	-20°C 80°C			
Warm-up Time	<.1 Min.			
Flow Rate	30 120 l/h			
Gas Pressure (absolute)	0.8 200 Bara / 700 Bara on request			
T90-Time	<ls< th=""></ls<>			
Noise	< 50 ppm			
Drift at zero point	< 100 ppm per week			
Repeatability	< 50 ppm			
Error due to change of ambient temperature	< 50 ppm per 10°C			
Flow Influence	< 50 ppm per 10l/h			
Pressure Dependency (above 800 hPa)	< 50 ppm per 10hPa			

All data refer to the measuring range 0.5 vol.% H_2 in N_2

MOST REQUESTED MEASUREMENT COMPONENTS AND RANGES					
Measuring gas	Carrier gas	Basis range	Smallest range		
Hydrogen (H ₂)	Oxygen (O2)	0 – 100 % *	0 – 0,5 %		
Oxygen (O ₂)	Hydrogen (H ₂)	0 – 100 % *	0 – 1,0 %		
Hydrogen (H ₂)	Nitrogen (N2) or air	0 – 100 %	0 – 0,5 %		
Nitrogen (N2)	Hydrogen (H2)	0 – 100 %	0 – 2,0 %		
Hydrogen (H ₂)	Argon (Ar)	0 – 100 %	0 – 0,5 %		
Hydrogen (H ₂)	Helium (He)	20 – 100 %	-		
Hydrogen (H ₂)	Methane (CH4)	0 – 100 %	0 – 0,5 %		
Hydrogen (H ₂)	Carbon dioxide (CO ₂)	0 – 100 %	0 – 0,5 %		
Helium (He)	Nitrogen (N2) or air	0 – 100 %	0 – 0,8 %		
Helium (He)	Argon (Ar)	0 – 100 %	0 – 0,5 %		
Methane (CH4)	Nitrogen (N2) or air	0 – 100 %	0 – 2,0 %		
Methane (CH4)	Argon (Ar)	0 – 100 %	0 – 1,5 %		
Oxygen (O ₂)	Nitrogen (N2)	0 – 100 %	0 – 15,0 %		
Oxygen (O ₂)	Argon (Ar)	0 – 100 %	0 – 2,0 %		
Oxygen (O ₂)	Carbon dioxide (CO ₂)	0 – 100 %	0 – 3,0 %		
Nitrogen (N2)	Argon (Ar)	0 – 100 %	0 – 3,0 %		
Carbon dioxide (CO2)	Nitrogen (N2) or air	0 – 100 %	0 – 3,0 %		
Carbon dioxide (CO2)	Argon (Ar)	0 - 60 %	0 – 10,0 %		
Argon (Ar)	Carbon dioxide (CO2)	40 – 100 %	-		
Argon (Ar)	Oxygen (O ₂)	0 – 100 %	0 – 3,0 %		
TCD technology also allows to perform the measurements of the following industrial gases: SF ₆ , NO ₂ , Neon, Krypton, Xenon, Deuterium etc.					
* correspondent safety measures must be taken by the client in the application with explosive gas mixtures					

GENERAL APPLICATION AREAS

APPLICATION EXAMPLES

•	家山庙	Oil & gas, petrochemicals, chemicals	Hydrogen measurement in electrolysis	O_2 in H_2	Upper Explosion Limit (UEL)
Ĭ			Oxygen measurement in electrolysis	H_2 in O_2	Lower Explosion Limit (LEL), with high moisture content
	çç Geri	Gas chromatographs Air separators and pure gas production	H2 contamination in electrolysis, fuel cells, and semiconductor industry	H ₂	99-100 vol.%, H2 Quality 4.0
¢		Detection of gas leakages	Exhaust gas measurement in fuel cells	H ₂ in Air	LEL monitoring with very high water content
0		Pharmacy	H2 injection into the natural gas network	H2 in Natural Gas	0-100 vol.%, mixing control
0		Food industry	Decomposition and synthesis of ammonia	H_2 in N_2 + NH_3	0-100 vol.%, process control
0	æ 🛱	Metals, minerals, pulp and paper	Turbogenerators in power generation	H₂ in Luft, H₂ in CO₂ (Ar), CO₂ (Ar) in Air	Monitoring of UEL, draining and filling process
Ô		Power generation	Pure gas production and incoming goods inspection	H ₂ , He, CH ₄ , O ₂ , N ₂ , CO ₂ , Ar	Identification of the quality of produced and delivered gases
0		Environmental technology	Industrial applications	H_2 in N_2	0-10 vol.%, systems for the production and monitoring of forming gas
			Safety monitoring	H2 in Air	UEL, analysis of hydrogen dispersion in facilities and buildings

O

ARCHIGAS

Experts in hydrogen measurement

Archigas GmbH Eisenstraße 3 D-65428 Rüsselsheim am Main

Registry Court: Frankfurt am Main Register Nummer: HRB 119977

Tel: +49 (0)69 247544980

Info@archigas.de

www.archigas.de